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ABSTRACT
In this work, we study the magnetic phases of a spatially modulated chain of spin-1 Rydberg excitons. Using the Density Matrix Renormal-
ization Group (DMRG) technique, we study various magnetic and topologically nontrivial phases using both single-particle properties, such
as local magnetization and quantum entropy, and many-body ones, such as pair-wise Néel and long-range string correlations. In particular,
we investigate the emergence and robustness of the Haldane phase, a topological phase of anti-ferromagnetic spin-1 chains. Furthermore, we
devise a hybrid quantum algorithm employing restricted Boltzmann machine to simulate the ground state of such a system that shows very
good agreement with the results of exact diagonalization and DMRG.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0128283

I. INTRODUCTION

Quantum spin systems have been the subject of intense studies
for a long time as they offer a playground for exploring fascinat-
ing physics.1 In 1983, Haldane showed that chains of half-integer
and integer spins are profoundly different.2,3 In particular, while the
Heisenberg antiferromagnetic chains have a ground state with an
excitation gap and exponentially decaying correlations for integer
spins, the ground state of half-integer spin chains has no excita-
tion gap and the correlation decays algebraically. Since then, the rich
physics of spin chains have been investigated extensively, leading to
the discovery of intriguing features, such as half-integer spin edge
modes4,5 and non-local string orders.6,7

Within the last two decades, significant advances in the control
of various quantum systems have led to the emergence of the quan-
tum simulator plethora in well-controlled laboratory setups based
on ultracold atoms in optical lattices, superconducting circuits, and
quantum dots, to name a few.8,9 Such controllable quantum systems
have been successfully used for the study of spin systems properties,

such as magnetism,10–13 transport,14 and topology.15–18 Recently,
there have been several attempts to simulate various condensed-
matter models using an array of Rydberg atoms, i.e., highly excited
atoms with macroscopic sizes and very susceptible to the external
fields.19 The enhanced polarizability of Rydberg atoms results in
large, long-range interactions and makes them a suitable platform
for the investigation of various spin systems.20–23

On the other hand, excitons, i.e., the quasi-particles of bounded
electron–hole pairs in semiconductors, offer an alternative platform
for the study of many-body quantum systems in a low-dimensional
integrable and scalable platform at high densities not accessible with
ultracold atoms. Like atoms, unique favorable scaling, such as strong
long-range interaction, and Rydberg blockade effect are expected for
Rydberg excitons, as well. The first observation of Rydberg exci-
tons up to n = 25 in cuprous oxide (Cu2O) in 201424 revived the
idea of excitonic quantum simulators and the field of semiconductor
Rydberg physics.25

Here, we study the emergent magnetic phases of a general-
ized spin-1 chain. The Hamiltonian parameters and the coupling
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coefficients are based on values attainable with Rydberg excitons
in Cu2O, where the spin-1 degrees of freedom can be mimicked
with optically active p-excitons. Furthermore, we develop a hybrid
quantum–classical algorithm to map this generalized spin-1 Hamil-
tonian to an spin- 1

2 Ising Hamiltonian using Restricted Boltzmann
Machine (RBM) architecture and simulate the ground state of some
prototypical examples. It must be noted that recently such hybrid
quantum simulations to explore excitonic properties of spin- 1

2 sys-
tems have begun to gain attention, such as in Ref. 26, which
creates an entangled state of photon–hole pairs representing an
exciton condensate on a 53-qubit quantum computer using a Lipkin
Hamiltonian.

The paper is organized as follows: In Sec. II, we introduce
the model describing the most general dynamics of a spin-1 chain
with nearest–neighbor interactions in a spatially modulated poten-
tial. In Sec. III, we employ the density matrix renormalization group
(DMRG) to study various magnetic phases emerging in this system
with physical parameters based on Rydberg excitons in Cu2O. We
classify the aforementioned many-body phases using pair-wise and
long-range string correlations, highlighting the emergence of Néel
order and topological Haldane phase at different modulated poten-
tials. Section IV puts forward a hybrid algorithm for the efficient
simulation of studying stationary states on noisy-intermediate-scale
quantum (NISQ) hardware. Since we are studying spin-1 particles,
the Hilbert space grows as 3N , making the problem intractable rather
quickly. We propose an algorithm that makes this scaling linear in
the system size N, which allows us to simulate the exact dynamics of
the model on a quantum computer. We summarize the results and
conclude the work in Sec. V and discuss the follow-up directions.

The results of this work pave the way for the study of spin-1
chains, supporting diverse topological and magnetic phases, on an
analog excitonic quantum simulator. Furthermore, it puts forward
an efficient algorithm to study the stationary states of such systems
on a gate-based digital quantum computer for the first time.

II. THE MODEL
In this section, we introduce the model of spin-1 chains char-

acterized by the number of spins, N. The most general Hamiltonian
with nearest–neighbor interaction is as follows:27

H =
jmax

∑
j=0

c0 + c1Sz
j Sz

j+1 + c2(Sx
j Sx

j+1 + Sy
j Sy

j+1) + c3(Sz
j Sz

j+1)
2

+ c4(Sx
j Sx

j+1 + Sy
j Sy

j+1)
2
+ c5(Sz

j Sz
j+1(S

x
j Sx

j+1 + Sy
j Sy

j+1)

+H.c.) + c6(Sx
j Sx

j+1 − Sy
j Sy

j+1)
2, (1)

where Sαi are the components of the usual S = 1 spin operators
with α ∈ {x, y, z}. For the periodic boundary conditions (PBC),
jmax = (N − 1) with jmax + 1 = 0, whereas for the open boundary
conditions (OBC), jmax = (N − 2). Several well-known spin mod-
els such as the transverse field Ising model,28,29 commonly stud-
ied Heisenberg spin models such as XXZ30,31 or XYZ,32,33 and
the Affleck–Kennedy–Lieb–Tasaki (AKLT) model with bi-quadratic
interaction terms34–38 are special cases of Eq. (1) with specific choices
of coefficients {ci}

6
i=0. Models beyond nearest neighbor interac-

tion can also display a rich phase diagram as has been investigated

recently39 in the context of fermion-pair condensation and exciton-
pair condensation.

The realization of such a spin model on an array of Rydberg
excitons in cuprous oxide has been proposed recently40,41 with the
promise of attaining topologically non-trivial phases. Such exci-
tons are created through optical excitations into Rydberg states of
varying principal quantum numbers n with the azimuthal quan-
tum number l = 1 (p-shell). The latter endows the array to behave
like an effective pseudospin-1 particle with the van der Waals inter-
action between excitons leading to the terms in Eq. (1) under the
assumption that only one exciton occupies each trapping site and
the direct exchange interaction is negligible. The coefficients c0–c6
for the said platform are listed in Table I in terms of a suitable energy
scale ϵ.40

Figure 1(a) shows that the energy scale ϵ escalates steeply with
increasing principal quantum number n (∝ n11

) for the Rydberg
excitons at a fixed R0, i.e., the inter-exciton distance. This quantity
decays with increasing R0 (∝ R−6

0 ) due to the reduction in the van
der Waals interaction between the excitons.

For Rydberg excitons in Cu2O considered in this work, due
to the same symmetry of the valence and conduction bands, the
p-orbitals are optically active; hence, the three orbital angular
momenta, l = 0,±1, behave as a pseudo spin-1. A simple anisotropic
potential behaving as S2

z can be used to partially remove the degen-
eracy (between ml = 0 and ml = ±1) of these three orbitals. For a
system of N excitons, if one assumes a parabolic harmonic trap
for each site, lifting of degeneracy of the triplet p-excitons allows
one to study richer and interesting physical systems with effects
inaccessible without the use of such local perturbation. Indeed, as we
shall see, a rich phase diagram emerges wherein the experimenter
can switch from one-phase to another by just tuning this on-site
anisotropy term. As a result, herein, we further investigate the
same spin model with locally modulated on-site potential defined as
D = {Dj = D1 + (−1)jD2∣∀j ∈ ZN , (D1, D2) ∈ R2

}.
The resultant spin system is similar to a Creutz ladder42–44

with two mutually interacting spin graphs with different local
anisotropies characterized by (D1, D2) (in units of the scale ϵ) in an
overall Hamiltonian of the form

H̃ = H +
N

∑
j

DjSz2

j . (2)

The local anisotropy profile for a particular realization of
(D1, D2) is schematically represented in Fig. 1(b). This periodic
modulation can be thought as two interlaced 1D exciton traps with

TABLE I. Values of the coefficients {c0–c6} in Eq. (1) for Rydberg excitons in cuprous
oxide.

Coefficients Value/ϵ

c0 −5.58
c1 9.53
c2 −8.97
c3 1.27
c4 6.59
c5 −3.18
c6 5.04
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FIG. 1. (a) log(ϵ) (ϵ is expressed in μeV) vs principal quantum number of the Ryd-
berg exciton state n at various inter-exciton distances R0 (in μm). (b) A schematic
for N = 8 spins of trapped excitons in Cu2O in a state characterized by (n, l = 1)
wherein n is the principal and l is the azimuthal quantum number of the Ryd-
berg excitonic quantum state. The scheme assumes local modulation to create
site-dependent anisotropies with D1 ≥ D2 and (D1, D2) > (0, 0), which ensures
lower exciton radius (blue) for tightly trapped sites (labeled as D1 + D2).

different depths. Such 1D arrays can be easily realized experimen-
tally using different approaches, e.g., via a periodic arrangement of
static stressors45,46 or surface acoustic waves47 to locally deform the
crystal lattice and trap the excitons, or using spatial light modula-
tors48 to create excitons at desired locations,49 or through the optical
confinement.50 If a spatial light modulator (SLM) is used, the con-
nectivity graph of the Hamiltonian can be changed in situ, which
is an advantage over the strain traps that are static and hence not
programmable. To realize the strong-limit of the Creutz ladder, one
can envision the even (odd) sites in Fig. 1(b) as the nodes of the
upper (lower) rungs.42 The flexibility of changing the interaction
strength between adjacent sites through changing the excitonic Ryd-
berg states, as depicted in Fig. 1(a), allows one to tune the interaction
strength between the nodes in situ and explore various phases of
the ladder model. Similar anisotropic potentials with modulation
after two sites can be used to simulate pair-wise interacting models,
such as the Su-Schreiffer Heeger (SSH) model,51 as well. Properties
of such models can be directly revealed using single-site as well as
non-local optical correlation measurements native to the platform.

Since the c1 > 0, the ground state of Eq. (1) has an anti-
ferromagnetic character,40 the predominance of which can be
conveniently tuned using a local anisotropy profile as in Eq. (2). The
modulated potential considered in this case serves to probe deeper
into the physics of the model by demarcating the regime wherein

such spin phases can be stabilized at will, including the topologically
non-trivial Haldane phase, thereby highlighting its robustness. Fur-
thermore, it provides a pathway to transition from trivial phases to
topological ones by controlling experimentally accessible parameters
by traversing a richer phase diagram hitherto unexplored.

Various phases would be characterized by one-body properties,
such as local magnetization and von Neumann entropy, followed
by many-body properties, such as Néel correlation52 and long-
range string correlations.34 In Sec. III, we first explicate the classical
resources used for the simulation and then present a linear-scaling
quantum algorithm designed for the study of such systems.

III. CLASSICAL SIMULATIONS
The classical simulations of the spin model have been per-

formed using the DMRG algorithm introduced by White53 and later
applied to many physical54–57 and chemically relevant problems.58–60

The algorithm is extremely popular to circumvent the exponential
scaling of many-body Hilbert spaces,61 especially in 1D, which is also
the scope of this work. A detailed overview of such algorithms can
be found elsewhere.61,62

We used the Julia version of ITensor as well as the DMRGPY
wrapper63 from the ITensor library for computation with maximum
bond dimensions of the required Matrix Product State (MPS) set to
be 250 for each sweep. 100 sweeps are used over the linear array with
a cutoff energy of convergence at 10−9 per sweep. For excited state
computations (not discussed in this paper), a weight parameter ω to
penalize the overlap with the ground state may be used with steadily
decreasing noise profile ≤10−6 for a crisp convergence.

Figures 2(a) and 2(b) shows the ground state energy profile in
the (D1, D2) plane, subject to PBC for two chain sizes N = 4 and
N = 16, respectively. We see that the ground state energy is lower
for smaller values of D1 irrespective of the modulation depth D2 (in
the range studied) and rises when D1 is escalated. We analyze the
properties of the spin chain at the designated points (A–I) marked in
Fig. 2(b) for N = 16. (Similar trends for different chain lengths can
be observed.) Using spin correlations, in Sec. III A, we discuss the
implications of this result and show that for (∣D1∣, ∣D2∣) ≈ (0, 0), e.g.,
point E, there is a distinct Haldane phase, whereas for (D1, D2)≪ 0,
e.g., point A, we have an anti-ferromagnet, and for (D1, D2)≫ 0,
e.g., point I, we have the large ∣D∣-limit disordered phase.64–67

A. Single and many-body properties
To determine different phases obtainable in this periodically

modulated spin-1 chain, we study certain order parameters such
as local magnetization (⟨S(i)z ⟩), its associated variance σSz,i , and the
von Neumann entropy of the reduced single-spin density matrix
1ρi along the chain as well as the pair-wise Néel [CN(i)] and the
long-range string [CS(i)] correlation defined as

CN(i) = (−1)i
⟨Sz

0Sz
i ⟩ (3)

and

CS(i) = ⟨Sz
0eiπ∑i−1

p=1Sz
p Sz

i ⟩. (4)

The local average of the magnetization ⟨Si
z⟩ is plotted in Fig. 3(a),

and the von Neumann entropy is shown in Fig. 3(b), respectively,
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FIG. 2. Ground state energy (per exciton, i.e., divided by N) of the Hamiltonian defined in Eq. (2) as a function of local anisotropy profile (D1, D2) in units of the energy
scale ϵ for (a) N = 4 and (b) N = 16 obtained from DMRG calculations. The energy surfaces for both spin chains are qualitatively similar and as shall be seen later display
similar kind of phases. The regime near ∣D1∣, ∣D2∣ ≈ (0, 0) is the Haldane phase, whereas for D1, D2 ≪ 0 we have the anti-ferromagnet and for D1, D2 ≫ 0 it is the
large-D-limit disordered phase. The approximate positions of the points (A, B, C, D, E, F, G, H, I) defined in the text are demarcated in panel (b). The points as (D1, D2) are
[A ≡ (−8,−8), B ≡ (−8, 0), C ≡ (−8, 8), D ≡ (0,−8), E ≡ (0, 0), F ≡ (0, 8), G ≡ (8,−8), H ≡ (8, 0), I ≡ (8, 8)].

FIG. 3. (a) The statistical properties of Sz,i along the chain (single-site magnetization about the z axis) for the spin chain with N = 16 in the ground state of the Hamiltonian
defined in Eq. (1) for different parameter regimes of (D1, D2) corresponding to the points (A, B, D, E, G, H) in Fig. 2(b). The two properties being displayed are single-site
average magnetization ⟨Sz⟩i (red stars) and the associated variance σ2

Szi
(blue circles). The top panel (A, B) admits a non-zero and oscillatory ⟨Sz⟩i behavior with a nearly

zero single-site variance, indicating a dominant single configuration in the many-body state. The remaining panels corresponding to (D, E, G, H) have vanishing ⟨Sz⟩i with
a non-zero variance, indicating a many-body state comprising a superposition of many computational configurations. (b) Single-site von Neumann entropy [expressed in
units of log(3)] defined as − Tr(1ρi ln(1ρi)) for the ground state of the Hamiltonian in Eq. (1) at N = 16 for different modulation parameters (D1, D2) corresponding to the
points discussed on the left panels.
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for points (A, B, D, E, G, H) defined in Fig. 2(b). Since a similar local
anisotropy profile is established in (C, F, I) as in (A, D, G), respec-
tively, with the odd and the even sites swapped [see Eq. (2)], the
former points are omitted from further discussion.

We see that for points (D, E, G, H), the magnetization ⟨Si
z⟩ at

each site, depicted with red stars, is predominantly zero with a non-
vanishing variance of Sz

i , locally. This essentially is a consequence
of attaining a many-body quantum state as a superposition of many
contributing configurations. However, that is not the case for (A, B)
due to a preference of one of the symmetry-broken configurational
states as is indicated by the low on-site variance of Sz .

This is further bolstered in the corresponding von Neumann
entropy profile presented in Fig. 3(b) calculated from the reduced
density matrix at each site (1ρi). As can be seen, the entropy attains
a low value for (A, B) due to the preference of one of the uncor-
related configurations, leading to a pure one-site reduced density
matrix (1ρi) at all sites i. The single-site entropy for other points
(D and E, G and H), however, are near maximal, indicating an almost
maximally mixed reduced density matrix (1ρi) at each site arising
from a many-body state as the superposition of computational basis
states.

To determine the phase of the spin chain at different points,
we investigate the correlations as shown in Fig. 4, where the blue
stars show the Néel order and the red circles indicate the string
correlation. For points (A, B) wherein D1 = −8, the Néel correlation
is sustained and non-decaying irrespective of D2. The modulating
Hamiltonian, i.e., the second term in Eq. (2), leads to a stabilized
ground state where sites with Sz

p = ±1 are favored over Sz
p = 0.

In the disordered phase at D1 = 8, however, e.g., (G, H), the
local anisotropy at each site is positive, and hence, unlike the
previous case, configurations with Sz

p = 0 are favored due to the non-
negative penalty of Sz

p = ±1 sites enforced by the local modulation.

As a result, many different configurations contribute significantly to
the ground state, and the overall anti-ferromagnetic order is lost with
the lack of exclusive dominance from Néel-ordered configurations.

When D1 = 0, e.g., at (D, E), the local anisotropy is ±8 for
alternating spins, and hence, partial remnants of anti-ferromagnetic
order as for D1 = −8 damped quickly due to the sites with local Sz

p = 0
being favored, owing to the non-negative penalty as in (G, H). We
also see a non-decaying string correlation in points (D, E) of Fig. 4.
It must be emphasized that due to the nature of the exponential
term in Eq. (4), which can contribute −1 for sites with Sp

z = ±1 and
1 for sites with Sp

z = 0, the string correlation remains negative for all
points (A–H), except at j = 0. The said order between site indexed
at “0” and at “j” can only acquire non-zeros values for configura-
tions wherein the terminal spin (S0

z , Sj
z) are in any one of the four

states (±1,±1) since the Sz = 0 on either spin would destroy the
correlation order defined in Eq. (4). The non-negativity of string
order can be qualitatively understood for certain phases using the
number of contributing configurations at least for the case of spin
indices at the terminus of the excitonic array i.e., j = N − 1. For
all such configurations in which the terminal spins are of opposite
spin-type, the intermediary spins that contribute to the exponen-
tial term in the string order must have ∑j−1

p=1Sp
z = 0 to ensure an

overall ∑j Sj
z = 0, which is the symmetry of the ground as well as

the first excited state (cf. Sec. S1 in the supplementary material).
Therefore, the total number of such configuration is proportional to
2(∑(j−1)/2

i=1 (
j−1

i )(
j−1−i

i ) + 1), all having the string correlation of −1.
On the other hand, when the terminal spins are in the same spin state
(non-zero) for which the string order is+1, the intermediary spins in
such configurations must have ∑j−1

p=1Sp
z = ±2, which is proportional

to a total count of 2(( j−1
2 )∑

(j−3)/2
i=1 (

j−3
i )(

j−3−i
i ) + 1). For (A, B), the

dominant configuration(s) are of the first kind with terminal spins

FIG. 4. The ground-state pair-wise Néel
order (blue stars) and the long-range
string (red circles) correlation for N = 16
and different modulation parameters
(D1, D2), corresponding to the points
(A, B, D, E, G, H) shown in Fig. 2(b), as
a function of site indices along the chain.
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at (±1,∓1), which explains their larger negative string correlations
compared to other points (cf. Sec. S2 in the supplementary material).

The above discussion together with the decaying Néel order
and the sustenance of string correlation at points (D, E, F)
(especially for E) supports the emergence of the topological Hal-
dane phase for this trap configurations. At point E, there is no
perturbation; hence, we recover the properties of the Haldane phase
discussed in Ref. 40. In Sec. IV, we discuss how such spin-1 system
can be mapped to an RBM based off spin-1/2 models with a hybrid-
algorithm linearly scaling in qubit numbers with the chain length N,
thereby allowing it to be studied on NISQ era quantum computers.

IV. QUANTUM SIMULATION USING RESTRICTED
BOLTZMANN MACHINE (RBM)

Quantum machine learning algorithms68 based on parame-
terized quantum circuits have begun to gain enormous attention
for understanding the physical properties of atomic and molecular
systems.69–72 One such network, commonly known as the Restricted
Boltzmann Machine,73 has been employed successfully as a neural-
network ansatz for a quantum state74 in many different applications,
such as in fermionic assemblies,75–77 in anyonic symmetries,78

in supervised phase-classification tasks,79,80 in dynamical
evolution,81 and in chemistry82–85 or even for classification of
classical data.86,87 The network is a universal approximator for any
probability density73,88 and can efficiently simulate a volume-law
entangled state even when sparsely parameterized.89 It has been
provably demonstrated that evaluating the full distribution classi-
cally would require exponential resources as long as polynomial
hierarchy is not collapsed;90 however, recently some of the authors
have reported a quantum algorithm training the said ansatz to
efficiently simulate the ground and excited state properties of
materials and molecules with quadratic resources.82

A. The generative model/ansatz for the task
The specific description of the network can be found in

Fig. 5(a). The core idea involves encoding the target state of the
desired Hamiltonian (to be called the driver system) into a neural-
network architecture that resembles a bipartite spin graph G with
tunable connectivity. Formally, the graph can be envisioned as
G = (V , E). The set of vertices V (henceforth to be called neu-
rons) is further divided as V = {ν}m+n

i=1 = {σ}
n
i=1⋃{h}

m
j=1⋃{p}

2
k=1

with (m, n) ∈ Z++, where Z++ means all strictly positive integers,
i.e., Z++ = {x > 0∣ ∀ x ∈ Z}. The neurons of the type σ⃗ ∈ {1,−1}n

[shown in blue in Fig. 5(a)] collectively form the visible node regis-
ter. For a given Hamiltonian matrix H ∈ C d×d of the driver system,
the number n is chosen such that n = ⌈ log2(d)⌉. The neurons of the
type h⃗ ∈ {1,−1}m [shown in green in Fig. 5(a)] constitute the hidden
node register. This number m can be chosen arbitrarily to accom-
plish the desired accuracy threshold (Here, m ∼ n). The role of the
hidden node register is to escalate the expressibility of the genera-
tive model by increasing the number of controllable parameters and
inducing higher-order hidden correlation among the spins of the
visible register.73,91,92 Two neurons of the type pk ∈ [−1, 1] shown
in orange and red in Fig. 5(a) constitute the phase nodes whose role
will be discussed shortly.93

FIG. 5. (a) The scheme for the network G used in this paper is made from the
combination of the usual RBM network73,91,92,94,95 and two extra neurons (demar-
cated in red as the phase node) to account for the phase of the wave function. (b)
The quantum circuit that has been used for variational training for generating the
amplitude field of the RBM part of the network G is shown for a specific case of
n = m = 2. The circuit is labeled as a parameterized unitary U(θ⃗). The neurons
of visible node and hidden node registers in (a) are replaced by qubits, which are
acted on by single-qubit unitaries with the respective color-coding maintained as
in (a). The circuit also requires an ancillary qubit (single-qubit unitary denoted by
yellow). In general, the circuit requires O(m + n) qubits and O(D(m + n)) gates,
where D is the depth of the ansatz.

It is also assumed that all possible pairs of neurons σi and
hj are interconnected. Furthermore, each σi shares edges with
the two neurons {p}2

k=1, also. Collectively, all such edges are
labeled as {eij}

n,m+2
i=1,j=1 and constitute the set E where ∣E∣ = mn + 2n.

Associated with the vertices νi ∈ V , we define a bias vector (a⃗, b⃗, c⃗)
∈ R m+n+2, where a⃗ = {a}n

i=1 is for neurons in the visible-node reg-
ister σ⃗, b⃗ = {b}m

j=1 for neurons in the hidden-node register h⃗, and
(c1, c2) for the two neurons {p}2

k=1 in the phase-node register. Sim-
ilarly, associated with eij ∈ E, where i ∈ ⌈n⌉ and j ∈ ⌈m⌉, we define
a weight matrix W⃗ ∈ R n×m. Together with the tunable parameters
(a⃗, b⃗, W⃗), we define the energy function E(a⃗, b⃗, W⃗, σ⃗, h⃗) as

E(a⃗, b⃗, W⃗, σ⃗, h⃗) = aTσ + bTh + hTWσ. (5)

This subset of the network encodes a probability distribution, which
is essentially the classical thermal state of the corresponding Ising
spin Hamiltonian in Eq. (5) defined as follows:96–99

P(a⃗, b⃗, W⃗, σ⃗, h⃗) =
e−E (a⃗ ,b⃗ ,W⃗ ,σ⃗ ,h⃗ )

∑{σh}e−E (a⃗ ,b⃗ ,W⃗ ,σ⃗ ,h⃗ )
. (6)

This subset of G thus constitutes the usual RBM network.
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Any realization of spin configuration (σ⃗, h⃗) of the combined
registers of (m + n) spins is sampled from the distribution in
Eq. (6). Since the parameter vector (a⃗, b⃗, W⃗) is real-valued, the func-
tional form in Eq. (6) mimics a probability distribution, only. To
account for the phase of the target wavefunction, herein, we encode
the following complex-valued function within the neurons {pk}

2
k=1

through the following activation function:93

s(d⃗, f⃗ , c⃗, σ⃗) = tanh[(c1 +∑
i

diσi) + i(c2 +∑
i

fiσi)], (7)

where d⃗, f⃗ ∈ R n are the weights for the connections between {p}2
k=1

and {σ}n
i=1 [see Fig. 5(a)]. The full ansatz thus consists of neurons

of the RBM as well as the two neurons of the phase node with a
complete set of parameter vector X = (a⃗, b⃗, W⃗, d⃗, f⃗ , c1, c2) that can
be adjusted variationally during the training process.

B. The outline of the algorithm and results
The purpose of using the aforesaid generative network is to

construct an ansatz for the amplitude and the phase of the target
state wavefunction for the Hamiltonian defined in Eq. (2) as follows:

ψ(X⃗) =∑
σ

√

∑

h⃗

P(a⃗, b⃗, W⃗, σ⃗, h⃗)s(d⃗, f⃗ , c⃗, σ⃗)∣σ1σ2 . . . σn⟩, (8)

wherein ∣σ1, σ2, . . . , σn⟩ represents the spin configurations of the vis-
ible node register {σ}n

i=1, which forms the computational basis in
which the target wavefunction is resolved. The parameter vector
X⃗ = (a⃗, b⃗, c⃗, W⃗, d⃗, f⃗ ) is tuned until the energy of the ansatz state is
variationally minimized. The wavefunction in Eq. (8) obtained at
the end of this training process has a large overlap with the target
state.

Recently, the authors have developed an algorithm to retrieve
the distribution directly using a quantum circuit82 with a circuit
width, a number of gates, and parameter count of O(m × n) for
a visible (hidden) node register of n(m) qubits. Since for S = 1,
conversion of the problem to qubit degrees of freedom already
leads to wasteful circuit widths, using the aforesaid quadratic scaling
algorithm for this system would be inefficient. To this end here, we
develop a linear scaling algorithm O(m + n), which also retrieves
the required distribution function based on an arbitrary Gibbs-state
preparation scheme as described in the following. The overarching
theme of our algorithm involves a double optimization protocol. The
outer-optimization involves tuning the parameter vector X⃗, whereas
the inner optimization involves constructing the Gibbs state, given
an (a⃗, b⃗, W⃗) defining a connected Ising spin system. In other words,
since our protocol involves neural-network encoding of the target
state [see Fig. 5(a)], the inner optimization loop is entrusted with
preparation of the thermal state representing the ansatz in its desired
structural form for a fixed incumbent instance of the parameter
vector X⃗, whereas the outer loop trains the ansatz and changes the
network parameters X⃗ following the usual gradient based updates.
Preparation of such thermal states in the inner loop is, in general,
a non-trivial task as it involves non-unitary transformation from a
pure state with entropy production. We shall see that this is aided
by mediating the interaction of the register of (m + n) qubits with
an ancillary qubit, leading to the formation of a mixed state (thermal

state) in the reduced space of the data register of (m + n) qubits. In
the absence of inner optimization loop, convergence would be poor
as the subsequent analytical gradients are reliant on the form of the
structural ansatz, whereas in the absence of the outer-optimization
loop, no training would happen at all.

● The algorithm starts by randomly assigning values to the
parameter vector X⃗ = (a⃗, b⃗, W⃗, c⃗, d⃗, f⃗ ) by sampling from a
uniform distribution within [−0.02, −0.02] to avoid the
problem of vanishing gradient.84 If training with random
initialization is not successful within the desired accuracy
threshold (say η), an initial parameter set of a previously
converged point in a similar optimization problem is used
as the initial guess. This process is called warm starting82,83

and is routinely used in machine learning for non-convex
functions as is the case here.

● The next step is using the (a⃗, b⃗, W⃗) set to construct a quan-
tum circuit that would return the thermal state ρth(a⃗, b⃗, W⃗)
of (m + n) qubits corresponding to the Ising energy func-
tion [defined in Eq. (5)]. The probability distribution that
encodes the amplitude field of the ansatz as defined in Eq. (6)
is then retrieved from the diagonal elements of this thermal
state. To construct the thermal state for the specific RBM
energy function we follow the protocol designed in Ref. 100
using an ansatz U(θ⃗) [see Fig. 5(b)] with a circuit width of
O(m + n) and a depth of D. The depth D has to be tuned
by the user for attaining the accuracy threshold of interest.
For this work, D = 3 suffices for all examples. The number
of gates required in the circuit is O(D(m + n)). The protocol
relies on minimizing the Helmholtz free-energy of (m + n)
qubits as the cost-function F(ρ(θ⃗, a⃗, b⃗, W⃗)) with respect to
θ⃗, keeping (a⃗, b⃗, W⃗) fixed at the input value. The extra ancil-
lary qubit acts as a digital bath to facilitate the formation of a
mixed state for the register with m + n qubits. (cf. Sec. S4 in
the supplementary material for more information about this
step).

● With P(a⃗, b⃗, W⃗, σ⃗, h⃗) from the previous step of the
algorithm, the phase function defined in Eq. (7) was com-
puted using the remaining part of the parameter set (c⃗, d⃗, f⃗ ).
Combining the two, the wavefunction ψ(X⃗) can now be
constructed and the cost-function for the outer loop of the
optimization be evaluated. Since the objective is learning
the eigenstates of the Hamiltonian H̃ in Eq. (2), we use the
following cost function for tuning the parameter vector X⃗:

C(∣ψ(X⃗)⟩, H̃, Ô, λ) = ⟨ψ∣H̃∣ψ⟩ + λ⟨ψ∣(Ô − ω)2
∣ψ⟩, (9)

where λ ∈ R++ is the penalty set as a hyper-parameter.
The symbol R++ means all strictly positive real numbers,
i.e., R++ = {x > 0∣ ∀ x ∈ R}. Ô is a user-defined symme-
try operator ([H̃, Ô] = 0̂) of the system whose eigenstate is
desired with a specific eigenvalue ω. The same prescription
allows us to not only target specific states based on symmetry
but also to explore excited states by sampling the orthogonal
complement of the ground state projection operator Pgr , i.e.,
by choosing Ô = Pgr and ω = 0. Quantum algorithms much
like this one have now been formulated, which can simulate
excited states efficiently.101,102 One must note that for the
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ground state λ = 0 is substituted in Eq. (9) as the usual
minimization of energy suffices.

● Once the cost-function C(∣ψ(X⃗)⟩, H̃, Ô, λ) is evaluated
in the outer loop, one can check for convergence
(if C(∣ψ(X⃗)⟩, H̃, Ô, λ) ≤ η where η is the convergence
threshold) or if the maximum number of iterations
has been completed. In either case, the resultant state
∣ψ(X⃗∗)⟩ and energy ⟨ψ(X⃗∗)∣H̃∣ψ(X⃗∗)⟩ are printed wherein
X⃗∗ = arg minX⃗ C(∣ψ(X⃗)⟩, H̃, Ô, λ).

However, if either condition is not satisfied, then the para-
meter vector X⃗ is updated using a gradient-based algorithm (ADAM
optimizer103 is used in this case) with learning rate α2 ∈ R++ as

X⃗ → X⃗ − α2∂X⃗C(∣ψ(X⃗)⟩, H̃, Ô, λ).

With the updated parameter set, one returns to the second step of the
algorithm for the next iteration. The process is continued until the
desired threshold convergence is reached or the maximum number
of iterations set is exhausted.

As a proof of concept, we now use the algorithm described to
compute the ground states for a linear array of N = 4 excitons in
Eq. (2) for different values of (D1, D2) as indicated in Fig. 2(b) under
the PBC. The corresponding ground state energies and their asso-
ciated errors are displayed in Figs. 6(a) and 6(b), respectively. The
energy errors are defined with respect to the results of the exact diag-
onalization (ED) with a convergence threshold of 2 × 10−3ϵ. Note
that the choice of this threshold is motivated by the fact that it corre-
sponds to a relative error percentage of <0.1% as can be established
using the absolute values of the energy in Fig. 2(a) and the obtained
errors from Fig. 6(b). The corresponding infidelities of the many-
body wavefunctions obtained from the RBM network are plotted in
Fig. 6(c). These infidelities are defined as 1 − F(ψRBM ,ψED), where
F(ψRBM ,ψED) = ∣⟨ψRBM ∣ψED⟩∣

2, and can only attain a value of zero if
the states from ED and RBM are the same. Since the infidelities of the
RBM wavefunctions are extremely low, this indicates that the state
are nearly alike with the ones from ED at all points A–I and hence
any observable property when computed from these states (includ-
ing but not limited to one-body properties or many-body properties,
such as correlation functions) would be in good agreement. We also
present the Néel and string order correlation functions obtained
from these states in Sec. S5 of the supplementary material. The
circuit described has been simulated using the Statevector Simulator
backend in Aer provider in Qiskit, which corresponds to IBM’s
Quantum Information Software Kit (Qiskit).104 The details about
mapping the system from psuedospin-1 degree of freedom to spin- 1

2
for training the network G = (V , E) are presented in Sec. S3 of the
supplementary material. The mapping techniques can also be used
for quantum simulation of dynamical systems with several coupled
potential energy surfaces for which a generalized mapping to spin
systems has been derived and discussed recently.105 For N = 4, the
total number of configurations accessible to the state-space would
be d = 34

= 81, which would require n = 7, m ∼ 7, and an additional
ancillary qubit for the simulation of the circuit as described in the
algorithm above. However, as the ground state is a singlet, symme-
try restrictions allow us to disregard non-conforming configurations
tapering the number of qubits to (n = m = 5). The total circuit width
is 11, which is already significantly higher than the usual simulation

FIG. 6. (a) The ground state energy per exciton (E gr) for N = 4 spins in Eq. (2)
for points (D1, D2) [marked in Fig. 2(b)] computed by training the network
G = (V , E) abbreviated as RBM as well as DMRG and the exact diagonaliza-
tion (ED). All results are expressed in units of ϵ as before. (b) The corresponding
energy errors from (a) for computations from both network G and DMRG with
respect to ED. (c) The corresponding state infidelities [1-F(ψRBM ,ψED)] where
F(ψRBM ,ψED) = ∣⟨ψRBM ∣ψED⟩∣

2 for the wavefunctions obtained from the RBM
calculations by training the network G = (V , E) as described.

requirements with the same number of spins in S = 1
2 case. For all the

(D1, D2) points studied, we have seen remarkable agreement with
the exact results and DMRG calculations as presented in the above
figure.

V. CONCLUSION
In this work, we studied different topological and magnetic

phases of a spatially modulated 1D chain of spin-1 particles with
the most general nearest–neighbor interactions realizable with opti-
cally active Rydberg p-excitons in Cu2O. Different phases have been
categorized based on local spin magnetization and the von Neumann
entropy as well as their pair-wise Néel and long-range string corre-
lations. By studying the phases as a function of the local modulation,
we examined both the phase transitions as well as their robustness
to local perturbations. Later, we proposed a quantum algorithm that
allowed us to simulate the many-body ground state of such a system
on a quantum computer using a hybrid approach based on RBM.
As mentioned, strongly interacting Rydberg excitons in Cu2O are
promising candidates for realizing analog quantum simulators in a
solid-state platform. The ability to control the interaction strength
is critical for investigating many-body systems, and in this case, the
interaction mediated via Rydberg excitons can be controlled with the
inter-particle spacing R0 as well as the principal quantum number of
the state, n. Therefore, Rydberg excitons provide a highly control-
lable and tunable tabletop solid-state platform with direct optical
access to the individual sites for coherent control as well as read-
out. Since the excitons are inherently out-of-equilibrium particles,
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an important follow-up study is to investigate the effect of drive
and dissipation on the results presented in this work. Furthermore,
it would be interesting to explore the implications of such phases
on the photoluminescence spectra of the exciton chain to exam-
ine whether the attainable magnetic and topological phases can be
directly studied by laser spectroscopy techniques. From the theo-
retical point of view, geometric analysis of the phase transitions
associated with some of the phases in this work may also be under-
taken.106 Another interesting direction is the study of long-range
interactions readily achievable with Rydberg excitons in such spin
systems. It would be interesting to explore the generalized models
with interactions beyond the nearest neighbor and study their effects
on the magnetic and topological phases obtained in this work.

SUPPLEMENTARY MATERIAL

Supplementary material consisting of five sub-sections is avail-
able along with this paper. In Sec. S1, we describe the symmetries
of the model like permutation, which is a Z2 symmetry of the model.
Appropriate angular momentum symmetry, which has been used for
qubit tapering, is also discussed. In Sec. S2, we present the explicit
amplitudes and phases of the various components of the wavefunc-
tion in the configuration basis obtained for a linear chain of N = 4
excitons in various phases—anti-ferromagnet, Haldane phase, and
large-∣D∣ disordered phase. In Sec. S3, we describe two methods
for mapping a spin-1 system to spin- 1

2 for training the network
G = (V , E). In Sec. S4, we present an explicit description of the
quantum circuit for the hardware implementation of the quantum
algorithm. In Sec. S5, we present the Néel and string order correla-
tion function obtained by training the network G = (V , E) using the
quantum algorithm and compare it against exact diagonalization.
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